معماری
عکس شخص سندرم داون

ژنومیکس

ژنومیکس و کاربرد آن در تشخیص بیماری‌ها

ژنومیکس

ژنومیکس مطالعه کل ژنوم است که شامل مطالعه توالی، نوترکیبی، عملکرد و ساختار می‌باشد (۱).‍‍ مطالعه یک ژن منفرد زمانی ژنومیکس نام می‌گیرد که تأثیر آن بر کل ژنوم یا پاسخی که به ژنوم می‌دهد (تأثیری که از ژنوم می‌گیرد) مورد بررسی واقع شود (۲).

تاریخچه

 

 

 

فردریک سانگر

واژه ژنومیکس برای اولین بار توسط دکتر Tom Roderick که یک ژنتیک‌دان بود مورد استفاده قرار گرفت (۳). به دنبال کشف ساختمانDNA توسط واتسون و کریک و همچنین انتشار توالی آمینواسیدی انسولین توسط Fred sanger اسیدهای نوکلئیک مورد توجه بیولوژیست‌ها قرار گرفتند (۴). در سال ۱۹۶۴ اولین توالی اسید نوکلئیک توسط Robert W Holley منتشر شد که این توالی مربوط به tRNA آلانین بود (۵, ۶). بعد از آن Marshal Nirenberg و Philip Leder ماهیت سه‌تایی کدهای ژنتیکی (کدون‌ها) را آشکار کردند (۷). در سال ۱۹۷۲ Walter Fiers و تیمش برای اولین بار توالی یک ژن را تعیین کردند که ژن مربوط به پروتئین پوششی باکتریوفاژ MS2 بود(۸). آنها در ادامه کارشان توالی نوکلئوتیدی کل ژنوم باکتریوفاژ MS2 (که ۳۵۶۹ جفت باز بود) را شناسایی کردند. در ادامه توالی نوکلئوتیدی ژنوم Simian virus 40 نیز در سال ۱۹۷۶شناسایی گردید (۹, ۱۰).

فردریک سانگر و همکارانش علاوه بر یافتن توالی آمینواسیدی انسولین نقش کلیدی در گسترش روش‌های تعیین توالی DNA را ایفا کردند؛ بدین صورت که در سال ۱۹۷۵ وی و Alan Coulson یک روش تعیین توالی به نام Plus and Minus ابداع کردند که در آن از DNA پلیمراز و همچنین اسیدهای نوکلئیک رادیولیبل شده استفاده می‌شد (۱۱). این روش قادر به تعیین توالی DNA تا ۸۰ نوکلئوتید بود (۱۱). فردریک سانگر با اعمال تغییراتی در روش Plus and Minus روش Chain termination یا همان روش سانگر را ابداع نمود که اساس تکنیک‌های توالی ‌یابی DNA را پایه گذاری کرد (۱۲). در همین زمان Walter Gilbert و Allan Maxam نیز به طور جداگانه روشی با کارایی کمتر نسبت به روش سانگر طراحی کردند که روش شیمیایی یا روش ماکسام و گیلبرت (DNA sequencing by chemical degradation) نام گرفت (۱۳). سانگر و گیلبرت به خاطر توسعه روش‌های توالی یابی DNA نیمی از جایزه نوبل شیمی را در سال ۱۹۸۰ دریافت کردند (۱۴).

اولین توالی‌های یوکاریوتی که بعد از ابداع روش فوق تعیین شدند توالی ژنومی میتوکندری و کلروپلاست بودند (۱۵). در ادامه توالی‌های بسیاری که اکثراً مربوط به پاتوژن‌های مختلف بیماری‌زا بودند تعیین گردید (۱۶). مطالعه و تعیین توالی کل ژنوم انسان با عنوان Human Genome Project در سال ۲۰۰۳ با تعیین توالی کل ژنوم یک فرد به پایان رسید و در سال ۲۰۰۷ این توالی با کمتر از یک خطا در ۲۰۰۰۰ باز به ثبت رسید (۱۷). با توسعه تکنولوژی‌های توالی‌یابی، پروژه‌های ژنومی زیادی به ثبت رسید که ادامه این روند با محدودیت‌های سیاسی و اجتماعی روبرو می‌باشد (۱۸).

     

کاربردها و ابعاد مختلف ژنومیکس

ژنومیکس را می‌توان از زوایای مختلفی مورد بررسی قرار داد:

 

Functional Genomics:

در ژنومیکس عملکردی، تفسیر، عملکرد و تعامل بین ژن‌ها با استفاده از اطلاعات ژنومی مورد بررسی قرار می‌گیرد. Functional genomics در واقع به بررسی عملکرد DNA در سطح ژن، رونویسی RNA و محصولات پروتئینی می‌پردازد و هدف اصلی آن یافتن ارتباط بین ژنوم یک ارگانیسم با فنوتیپ آن می‌باشد (۱۹).

 

Structural Genomics:

ژنومیکس ساختاری، ساختمان سه بعدی تمام پروتئین‌هایی که توسط ژنوم کد می‌شوند را تشریح می‌کند. با توجه به ارتباط نزدیک ساختمان و عملکرد پروتئین‌ها، ژنومیکس ساختاری پتانسیل توضیح عملکرد پروتئین‌ها را دارد (۲۰). یکی از اهداف ژنومیکس ساختاری شناسایی ساختمان‌های جدید پروتئینی است (۲۱).

 

Epigenomics:

مطالعه تمام ویژگی‌های اپی‌ژنتیکی ژنوم را اپی‌ژنومیکس می‌گویند که از جمله مهم‌ترین این ویژگی‌ها متیلاسیون DNA و Histone modification می‌باشد. اپی‌ژنتیک نقش مهمی در تنظیم بیان ژن ایفا می‌کند (۲۲).

 

Metagenomics:

متاژنومیکس مطالعه متاژنوم می‌باشد. متاژنوم محصولات ژنتیکی هستند که مستقیماً از نمونه‌های موجود در محیط به دست می‌آیند. متاژنومیکس را می‌توان به صورت زیر تعریف کرد:

” بکارگیری تکنیک‌های مدرن ژنومیکس در جوامع میکروبی، مستقیماً در محیط طبیعی آنها بدون نیاز به ایزوله کردن یا کشت گونه‌های خاص در آزمایشگاه” (۲۳).

 

تکنیک‌ها، روش‌ها و ابزارهای مورد استفاده در ژنومیکس

ابزارها و روش‌های مختلفی در ژنومیکس مورد استفاده قرار می‌گیرند که در ادامه به اختصار توضیح داده می‌شوند.

 

کاریوتایپ

کاریوتایپ بررسی کروموزوم‌های یک سلول است که در مرحله متافاز متـــــــــوقف شده و با یک رنگ خاص

شکل ۱٫ تصویر یک کاریوگرام معمولی به همراه دسته بندی کروموزوم‌ها

رنگ‌آمیزی و قابل رؤیت گردیده‌اند (شکل ۱). با پیشرفت تکنیک‌های tissue culture و بکارگیری روش‌های رنگ‌آمیزی کروموزوم‌ها، برای اولین بار کاریوگرام‌ها در سال‌های بین ۱۹۵۰ تا ۱۹۶۰ ارائه شدند (۲۴). کاریوگرام‌ها نشان دهنده اندازه، شکل و محل قرار گیری کروموزومها می‌باشند (۲۴).

برای انجام کاریوتایپ بر روی انسان، معمولا از گلبول‌های سفید خونی که به راحتی کشت می‌شوند استفاده می‌گردد (۲۵). این سلول‌ها در طی تقسیم سلولی و در مرحله میتوز به وسیله محلولی از colchicine متوقف شده و کروموزوم‌ها آزاد می‌گردند (۲۶). برای اینکه کروموزوم‌ها قابل رؤیت گردند از تکنیک‌های مختلفی استفاده می‌شود؛ یکی از این تکنیک‌ها G-banding یاGiemsa-banding است. در این تکنیک کروموزوم‌هایی که در مرحله متافاز متوقف شده‌اند در معرض تریپسین قرار گرفته و سپس به وسیله رنگ گیمسا رنگ‌آمیزی می‌گردند، سپس به وسیله میکروسکوپ از آنها عکسبرداری شده و نتایج به صورت کاریوگرام مرتب می‌شوند. نواحی غنی از A و T بصورت باندهای تیره مشخص می‌گردند (۲۶, ۲۷). روش دیگر banding نیز وجود دارد از جمله آنها می‌توانR-banding (رنگ‌آمیزی نواحی تیره یوکروماتین)، C-banding (سانترومر‌ها)، Q-banding (استفاده از quinacrine و بررسی الگوی فلورسنت) و T-banding (تلومرها) را نام برد (۲۵).

شکل ۲٫ تصویر کاریوگرام دختری با سندرم ترنر. ایزوکروموزوم X با پیکان مشخص شده است

سندرم ترنر

اگرچه تکنیک‌ها و تکنولوژی‌های ژنومیکس پیشرفت‌های زیادی داشته‌اند، اما روش‌هایی مانند کاریوتایپینگ امروزه نیز برای اهداف غربالگری و یا در نواحی دارای امکانات محدود همچنان مورد استفاده قرار می‌گیرند. از کاریوتایپینگ برای تشخیص بیماری‌های ژنتیکی مختلفی استفاده می‌شود (شکل ۲). از جمله این بیماری‌ها می‌توان به سندرم داون (شکل ۳) و سندرم ترنر (Turnuer) اشاره کرد (۲۴).

 

 سندرم داون عکس شخص سندرم داون

شکل ۳٫ (سمت چپ) کاریوگرام مربوط به فردی با سندرم داون که تریزومی ۲۱ در آن مشخص شده است. (سمت راست) مشخصات چهره افراد دارای سندرم داون

 

Fluorescence in situ hybridization (FISH):

 

 

در دهه ۱۹۶۰، Joseph Gall و Mary Lou Pardue دریافتند که برای یافتن محل توالی‌های DNA در جایگاه طبیعی خود در کروموزوم می‌توان از هیبریداسیون مولکولی استفاده کرد (شکل ۴). in situ مفهوم “در جایگاه طبیعی آنها در کروموزوم” را می‌رساند. در ابتدا فرآیند نشاندار کردن به وسیله مواد رادیواکتیو انجام می‌گرفت اما اندکی بعد لیبل‌های فلورسنت جایگزین آنها شدند (۲۸).

اولین مرحله در FISH تهیه یک پروب نشاندار فلورسانس و یا یک پروب تغییر یافته است که بتوان پس از اتصال آن را نشاندار کرد. ابتداDNA هدف و پروب بوسیله حرارت یا بصورت شیمیایی دناتوره می‌شوند و سپس با یکدیگر مخلوط می‌گردند. پروب به قسمتی از DNA که مکمل آن می‌باشد متصل می‌گردد. محل قرار گرفتن توالی هدف بر روی کروموزوم بوسیله میکروسکوپ فلورسانس مشخص می‌شود. امروزه این تکنیک به سمت تشخیص بالینی سوق پیدا کرده است. از این تکنیک می‌توان به منظور تشخیص اختلالات کروموزومی نظیر حذف شدن قطعه خاصی از DNA، دریافت نسخه اضافی و جابجایی‌های کروموزومی استفاده کرد (۲۸).

 

Multifluor FISH (Spectral karyotyping):

 

 

برای تشخیص بازآرایی های کروموزومی و بررسی سریع مجموعه کروموزوم‌ها می‌توان از این تکنیک استفاده کرد. نتیجه حاصل از FISH Multifluor در واقع کاریوتیپی است که در آن کروموزوم‌‌ها با رنگ‌های متفاوتی رنگ‌آمیزی شده‌اند (شکل ۵). هر رنگ در واقع مجموعه‌ای از پروب‌هاست که به نواحی مختلف کروموزوم اتصال یافته‌اند. یک کروموزوم طبیعی در تمام طول خود به یک رنگ دیده می‌شود اما کروموزوم های غیر طبیعی مانند کروموزوم‌های سلول‌های سرطانی، ظاهری راه راه با رنگ‌های دیگر را نشان می‌دهند (۲۸).

 

این روش نیز مانند روش کاریوتیپ دارای قدرت تفکیک پایینی نسبت به سایر روش‌ها می‌باشد و حذف یا اضافه شدن قطعات DNA با اندازه کوچک در آنها قابل تشخیص نیست. برتری این روش نسبت به کاریوتیپ، توانایی بررسی کروموزوم‌های اینترفازی است و نیازی به کشت سلول‌ها به مدت طولانی نیست، همچنین در این روش می‌توان نواحی مختلفی از کروموزوم را به طور همزمان مورد بررسی قرار داد (۲۸).

 

Microarray:

 

 

ایده و متدولوژی Microarray برای اولین بار بوسیله Antibody microarrayها معرفی گردید (۲۹). DNA Microarrayها شامل پروب‌های DNA می‌باشند که به یک سطح جامد مانند شیشه یا سیلیکون متصل شده‌اند. هر نقطه بر روی این سطح جامد دارای تعداد زیادی پروب است که قطعات DNAمی‌توانند به آنها متصل شوند. قطعاتDNA که با یک ماده فلورسانس نشاندار شده‌اند به قطعه پروبی که مکمل آنها است متصل می‌گردند و سپس نقاطی که قطعات DNA به آنها متصل شده و یا متصل نشده‌اند مورد بررسی قرار می‌گیرند (شکل ۶). این تکنیک کاملاً مشابه تکنیک‌های قدیمی ساترن بلات و نورترن بلات بوده و تفاوتش با این روش‌ها در این است که در Microarray تعداد زیادی ژن بطور همزمان مورد بررسی قرار می‌گیرند (۳۰).

 

با بکار گیری این تکنولوژی می‌توان میزان بیان هزاران ژن را به طور همزمان مورد بررسی قرار داد (۳۰). از این تکنولوژی می‌توان در تشخیص و افتراق تعداد زیادی از سرطان‌ها مانند سرطان پروستات و سرطان سینه استفاده کرد؛ بعنوان مثال برای افتراق لوسمی میلوبلاستی حاد ( AML) و لوسمی لنفوبلاستی حاد (ALL) از این تکنولوژی استفاده شده است؛ بدین صورت که مجموعه‌ای ۳۸ تایی از نمونه‌های لوسمی جمع‌آوری و بیان ۶۸۱۷ ژن انسانی در آنها مورد بررسی قرار گرفت ۵۰ ژن به صورت یک زیر مجموعه از این مجموعه ژنی برای افتراق AML و ALL مورد استفاده قرار گرفت که از جمله آنها می‌توان CD-11، CD-33 و MB-1 که پروتئین‌های سطحی سلول را کد می‌کنند را نام برد. ژن دیگر گیرنده لپتین بود که مارکری در لوسمی حاد محسوب می‌شود و در تنظیم وزن نقش دارد و مشخص شد که در AML دارای افزایش بیان می‌باشد. ژن‌های مربوط به چرخه سلولی، آپوپتوز و سایر انکوژن‌ها نیز مورد بررسی قرار گرفتند (۳۰, ۳۱).

از DNA Microarray می‌توان در شناسایی یک مسیر متابولیکی خاص، بیماری خاص و یا برای اهداف درمانی استفاده کرد؛ به عنوان مثال کاتپسین k که یک سیستئین پروتئاز می‌باشد به طور انتخابی در استئوکلاست‌ها بیان می‌شود. استئوکلاست‌ها مسئول بازجذب استخوان‌ها هستند. عدم تعادل بین تشکیل استخوان و بازجذب آن می‌تواند منجر به استئوپورز شود. با بررسی‌های انجام شده مشخص شد کاتپسین k به طور انتخابی در استئوکلاست‌ها بیان می‌گردد و مهار کردن آن می‌تواند باعث جلوگیری از استئوپورز گردد (۳۲).

از Microarray می‌توان در تشخیص و شناسایی پاتوژن‌ها نیز استفاده کرد. با استفاده از این تکنولوژی می‌توان باکتری پاتوژن Escherichia coli o.157:hv را از باکتری غیر پاتوژن E.coli K12 افتراق داد (۳۰). بنابر‌این از آن جایی که تکنولوژی Microarray امکان بررسی تعداد زیادی از ژن‌ها و میزان بیان آن‌ها را به طور همزمان فراهم می‌کند، می‌توان از آن به عنوان ابزار مناسبی برای اهداف تشخیصی در شرایط مختلف استفاده کرد (۳۰).

ماهنامه اخبار آزمایشگاهی

سینا وکیلی دانشجوی کارشناسی ارشد بیوشیمی بالینی گروه بیوشیمی دانشگاه علوم پزشکی کرمان

دکتر غلامرضا اسدی کرم استاد بیوشیمی بالینی گروه بیوشیمی دانشگاه علوم پزشکی کرمان