گزارش کار انتقال حرارت به طریق جابجایی آزاد و اجباری

سیستم‌های خنک کننده، یکی از مهم ‌ترین دغدغه‌های کارخانه‌ها و صنایعی مانند میکروالکترونیک و هر جایی است که به نوعی با انتقال گرما روبه‌رو باشد. با پیشرفت فناوری در صنایعی مانند میکروالکترونیک که در مقیاس‌های زیر صد نانومتر عملیات‌های سریع و حجیم با سرعت‌های بسیار بالا (چند گیگا هرتز) اتفاق می‌افتد و استفاده از موتورهایی با توان و بار حرارتی بالا اهمیت به سزایی پیدا می ‌کند، استفاده از سیستم‌های خنک ‌کننده پیشرفته و بهینه، کاری اجتناب‌ناپذیر است. بهینه‌سازی سیستم‌های انتقال حرارت موجود، در اکثر مواقع به وسیله افزایش سطح آنها صورت می‌گیرد که همواره باعث افزایش حجم و اندازه این دستگاه‌ها می‌شود؛ لذا برای غلبه‌ بر این مشکل، به خنک کننده‌های جدید و مؤثر نیاز است و نانو سیالات به عنوان راهکاری جدید در این زمینه مطرح شده‌اند.

 

تئوری:

خواص استثنایی نانوسیالات شامل هدایت حرارتی بیشتر نسبت به سوسپانسیون‌های معمولی، رابطه غیرخطی بین هدایت وغلظت مواد جامد و بستگی شدید هدایت به دما و افزایش شدید فلاکس حرارتی در منطقه جوشش است. این خواص استثنایی، به همراه پایداری، روش تهیه نسبتاً آسان و ویسکوزیته قابل قبول باعث شده تا این سیالات به عنوان یکی از مناسب‌ترین و قوی‌ترین انتخاب‌ها در زمینه سیالات خنک کننده مطرح شوند. نتایج یکی از تحقیقات منتشر شده در زمینه تغییر هدایت حرارتی نانوسیال به عنوان تابعی از غلظت در آمده است.

بیشترین تحقیقات روی هدایت حرارتی نانوسیالات، در زمینه سیالات حاوی نانوذرات اکسید فلزی انجام شده است.ماسودا افزایش ۳۰ درصدی هدایت حرارتی را با اضافه کردن ۳/۴ درصد حجمی آلومینا به آب گزارش کرده است. ولی افزایش ۱۵ درصدی را برای همین نوع نانوسیال با همین درصد حجمی گزارش کرده است که تفاوت این نتایج را ناشی از تفاوت در اندازه نانوذرات به‌کار رفته در این دو تحقیق می‌داند. قطر متوسط ذرات آلومینای بکاررفته در آزمایش اول ۱۳نانومتر و در آزمایش دوم ۳۳ نانومتر بوده است. زای و همکاران افزایش ۲۰ درصدی را برای ۵۰ درصد حجمی از همین نانوذرات گزارش کرده‌اند. گروه مشابهی برای نانوذرات کاربید سیلیکون نیز به نتایج مشابهی رسیدند. لی بهبود نسبتاً کمتری را در هدایت حرارتی نانوسیالات حاوی نانوذرات اکسید مس، نسبت به نانوذرات آلومنیا مشاهده کرد؛ در حالی که ونگ ۱۷ درصد افزایش هدایت حرارتی را برای فقط ۴/۰ درصد حجمی از نانوذرات اکسید مس در آب گزارش کرده است. برای نانوسیال با پایه اتیلن گلیکول، افزایش بالای ۴۰ درصد برای ۳/۰ درصد حجمی مس با متوسط قطر ده نانومتر گزارش شده است. پتل افزایش بالای ۲۱ درصد برای سوسپانسیون ۱۱ درصد حجمی از نانوذرات طلا و نقره که به ترتیب در آب و تولوئن پراکنده شده بودند را مشاهده کرد. در مواردی هم هیچ افزایش قابل توجهی در هدایت مشاهده نشده است.

اخیراً تحقیقات دیگری روی وابستگی هدایت به دما برای غلظت‌های بالای نانوذرات اکسید فلزات و غلظت‌های پایین نانوذرات فلزی در حال انجام است که در هر دو مورد در محدوده دمای ۲۰ تا ۵۰ درجه سانتیگراد افزایش دو تا چهار برابری در هدایت مشاهده شده است و در صورت تأیید این خواص برای دماهای بالاتر می‌توان نانوسیال را در سیستم‌های گرمایشی نیز استفاده کرد.بیشترین افزایش هدایت در سوسپانسیون نانولوله‌های کربنی گزارش شده است که علاوه بر هدایت حرارتی بالا، نسبت طول به قطر بالایی دارند. از آنجا که نانولوله‌های کربنی، تشکیل یک شبکه فیبری می‌دهند، سوسپانسیون آنها بیشتر شبیه کامپوزیت‌های پلیمری عمل می‌کند. بیرکاک افزایش ۱۲۵ درصدی هدایت را در اپوکسی پلیمر- نانولوله حاوی یک درصد نانولوله تک دیواره گزارش کرد، همچنین مشاهده کرد که با افزایش دما، هدایت حرارتی افزایش می‌یابد.
چوی برای سوسپانسیون یک درصد نانولوله‌های چند دیواره در روغن ۱۶ درصد افزایش هدایت حرارتی گزارش کرده است. گزارش‌ها و تحقیقات مختلفی در زمینه افزایش هدایت حرارتی سوسپانسیون نانولوله‌کربنی ارائه شده است؛ زای افزایش ده تا ۲۰ درصدی هدایت حرارتی را در سوسپانسیون یک درصد حجمی با سیال آب گزارش کرده است. ون و دینگ نیز ۲۵درصد افزایش هدایت را در سوسپانسیون ۸/۰ درصد حجمی در آب گزارش کرده است. اسیل بیشترین افزایش را ۳۸ درصد برای سوسپانسیون شش درصد حجمی در آب گزارش کرده است.

ون و دینگ افزایش سریع هدایت در غلظت‌های حدود ۲/۰ درصد حجمی را گزارش کرده و نشان داده است که این افزایش از آن به بعد تقریباً ثابت می‌ماند. در تمامی گزارش‌ها افزایش هدایت با دما مشاهده شده؛ هر چند برای دماهای بالاتر از ۳۰ درجه سانتیگراد این افزایش تقریباً متوقف می‌شود.

شرح دستگاه:

دستگاه آزمایش انتقال حرارت جابجایی که شامل یک کانال عمودی است که در یک وجه کناری آن یک صفحه فلزی تعبیه شده که یک مقاومت الکتریکی(Re) با توان قابل تنظیم در پشت آن متصل است. جریان برق (I) عبور کننده از این مقاومت سبب تولید انرژی گرمایی معادل با E = I. Re = I. V می شود که در اینجا V میزان ولتاژ در مدار الکتریکی است. و باعث بالا رفتن دمای صفحه می گردد. عایقی در پشت این مقاومت نصب شده که تقریباً از اتلاف انرژی گرمایی تولید شده ممانعت

می کند. فرض می شود که ضخامت صفحه بقدری است که دمای صفحه تقریباً ثابت می ماند. پس می توان فرض کرد که کل انرژی تولید شده، توسط صفحه به هوای مجاور آن در کانال منتقل می شود. در حالت جابجایی اجباری از یک مکنده هوا در بالای کانال برای ایجاد جریان استفاده میشود که با تغییر دور آن می توان در سرعت های مختلف جابجایی اجباری از یک مکنده هوا در بالای کانال برای ایجاد جریان استفاده می شود که با تغییر دور آن می توان در سرعت های مختلف جابجایی اجباری را بررسی کرد. در حالت جابجایی آزاد این مکنده خاموش است. یک صفحه نمایشگر الکتریکی دما،دمای ترموکوپل را نشان می دهد. ترموکوپل برای اندازه گیری دمای هوای ورودی(T1∞ ) و خروجی(T2∞) از کانال و سطح داغ ( TS) بکار می رود.

 

شرح کار:

 

۱- دستگاه راروشن و سرعت مکنده را در میزان از پیش تعین شده تنظیم کنید.

۲- سنسور دما را در نقطه TS قرار دهید.

۳- توان الکتریکی مقاومت رادر نقطه از پیش تعیین شده و ….

متن کامل در فایل زیر:

قیمت ۱۰۰۰ تومان

RIAL 10,000 – خرید
امتیاز مطلب
تاریخ ارسال
گزارش کار عالی
5
اشتراک گذاری

ارسال یک پاسخ