معماری

گزارش کار انتقال حرارت به طريق جابجايي آزاد و اجباري

سيستم‌هاي خنک کننده، يکي از مهم ‌ترين دغدغه‌هاي کارخانه‌ها و صنايعي مانند ميکروالکترونيک و هر جايي است که به نوعي با انتقال گرما روبه‌رو باشد. با پيشرفت فناوري در صنايعي مانند ميکروالکترونيک که در مقياس‌هاي زير صد نانومتر عمليات‌هاي سريع و حجيم با سرعت‌هاي بسيار بالا (چند گيگا هرتز) اتفاق مي‌افتد و استفاده از موتورهايي با توان و بار حرارتي بالا اهميت به سزايي پيدا مي ‌کند، استفاده از سيستم‌هاي خنک ‌کننده پيشرفته و بهينه، کاري اجتناب‌ناپذير است. بهينه‌سازي سيستم‌هاي انتقال حرارت موجود، در اکثر مواقع به وسيله افزايش سطح آنها صورت مي‌گيرد که همواره باعث افزايش حجم و اندازه اين دستگاه‌ها مي‌شود؛ لذا براي غلبه‌ بر اين مشکل، به خنک کننده‌هاي جديد و مؤثر نياز است و نانو سيالات به عنوان راهکاري جديد در اين زمينه مطرح شده‌اند.

 

تئوری:

خواص استثنايي نانوسيالات شامل هدايت حرارتي بيشتر نسبت به سوسپانسيون‌هاي معمولي، رابطه غيرخطي بين هدايت وغلظت مواد جامد و بستگي شديد هدايت به دما و افزايش شديد فلاکس حرارتي در منطقه جوشش است. اين خواص استثنايي، به همراه پايداري، روش تهيه نسبتاً آسان و ويسکوزيته قابل قبول باعث شده تا اين سيالات به عنوان يکي از مناسب‌ترين و قوي‌ترين انتخاب‌ها در زمينه سيالات خنک کننده مطرح شوند. نتايج يکي از تحقيقات منتشر شده در زمينه تغيير هدايت حرارتي نانوسيال به عنوان تابعي از غلظت در آمده است.

بيشترين تحقيقات روي هدايت حرارتي نانوسيالات، در زمينه سيالات حاوي نانوذرات اکسيد فلزي انجام شده است.ماسودا افزايش 30 درصدي هدايت حرارتي را با اضافه کردن 3/4 درصد حجمي آلومينا به آب گزارش کرده است. ولي افزايش 15 درصدي را براي همين نوع نانوسيال با همين درصد حجمي گزارش کرده است که تفاوت اين نتايج را ناشي از تفاوت در اندازه نانوذرات به‌کار رفته در اين دو تحقيق مي‌داند. قطر متوسط ذرات آلوميناي بکاررفته در آزمايش اول 13نانومتر و در آزمايش دوم 33 نانومتر بوده است. زاي و همکاران افزايش 20 درصدي را براي 50 درصد حجمي از همين نانوذرات گزارش کرده‌اند. گروه مشابهي براي نانوذرات کاربيد سيليکون نيز به نتايج مشابهي رسيدند. لي بهبود نسبتاً کمتري را در هدايت حرارتي نانوسيالات حاوي نانوذرات اکسيد مس، نسبت به نانوذرات آلومنيا مشاهده کرد؛ در حالي که ونگ 17 درصد افزايش هدايت حرارتي را براي فقط 4/0 درصد حجمي از نانوذرات اکسيد مس در آب گزارش کرده است. براي نانوسيال با پايه اتيلن گليکول، افزايش بالاي 40 درصد براي 3/0 درصد حجمي مس با متوسط قطر ده نانومتر گزارش شده است. پتل افزايش بالاي 21 درصد براي سوسپانسيون 11 درصد حجمي از نانوذرات طلا و نقره که به ترتيب در آب و تولوئن پراکنده شده بودند را مشاهده کرد. در مواردي هم هيچ افزايش قابل توجهي در هدايت مشاهده نشده است.

اخيراً تحقيقات ديگري روي وابستگي هدايت به دما براي غلظت‌هاي بالاي نانوذرات اکسيد فلزات و غلظت‌هاي پايين نانوذرات فلزي در حال انجام است که در هر دو مورد در محدوده دماي 20 تا 50 درجه سانتيگراد افزايش دو تا چهار برابري در هدايت مشاهده شده است و در صورت تأييد اين خواص براي دماهاي بالاتر مي‌توان نانوسيال را در سيستم‌هاي گرمايشي نيز استفاده کرد.بيشترين افزايش هدايت در سوسپانسيون نانولوله‌هاي کربني گزارش شده است که علاوه بر هدايت حرارتي بالا، نسبت طول به قطر بالايي دارند. از آنجا که نانولوله‌هاي کربني، تشکيل يک شبکه فيبري مي‌دهند، سوسپانسيون آنها بيشتر شبيه کامپوزيت‌هاي پليمري عمل مي‌کند. بيرکاک افزايش 125 درصدي هدايت را در اپوکسي پليمر- نانولوله حاوي يک درصد نانولوله تک ديواره گزارش کرد، همچنين مشاهده کرد که با افزايش دما، هدايت حرارتي افزايش مي‌يابد.
چوي براي سوسپانسيون يک درصد نانولوله‌هاي چند ديواره در روغن 16 درصد افزايش هدايت حرارتي گزارش کرده است. گزارش‌ها و تحقيقات مختلفي در زمينه افزايش هدايت حرارتي سوسپانسيون نانولوله‌کربني ارائه شده است؛ زاي افزايش ده تا 20 درصدي هدايت حرارتي را در سوسپانسيون يک درصد حجمي با سيال آب گزارش کرده است. ون و دينگ نيز 25درصد افزايش هدايت را در سوسپانسيون 8/0 درصد حجمي در آب گزارش کرده است. اسيل بيشترين افزايش را 38 درصد براي سوسپانسيون شش درصد حجمي در آب گزارش کرده است.

ون و دينگ افزايش سريع هدايت در غلظت‌هاي حدود 2/0 درصد حجمي را گزارش کرده و نشان داده است که اين افزايش از آن به بعد تقريباً ثابت مي‌ماند. در تمامي گزارش‌ها افزايش هدايت با دما مشاهده شده؛ هر چند براي دماهاي بالاتر از 30 درجه سانتيگراد اين افزايش تقريباً متوقف مي‌شود.

شرح دستگاه:

دستگاه آزمایش انتقال حرارت جابجایی که شامل یک کانال عمودی است که در یک وجه کناری آن یک صفحه فلزی تعبیه شده که یک مقاومت الکتریکی(Re) با توان قابل تنظیم در پشت آن متصل است. جریان برق (I) عبور کننده از این مقاومت سبب تولید انرژی گرمایی معادل با E = I. Re = I. V می شود که در اینجا V میزان ولتاژ در مدار الکتریکی است. و باعث بالا رفتن دمای صفحه می گردد. عایقی در پشت این مقاومت نصب شده که تقریباً از اتلاف انرژی گرمایی تولید شده ممانعت

می کند. فرض می شود که ضخامت صفحه بقدری است که دمای صفحه تقریباً ثابت می ماند. پس می توان فرض کرد که کل انرژی تولید شده، توسط صفحه به هوای مجاور آن در کانال منتقل می شود. در حالت جابجایی اجباری از یک مکنده هوا در بالای کانال برای ایجاد جریان استفاده میشود که با تغییر دور آن می توان در سرعت های مختلف جابجایی اجباری از یک مکنده هوا در بالای کانال برای ایجاد جریان استفاده می شود که با تغییر دور آن می توان در سرعت های مختلف جابجایی اجباری را بررسی کرد. در حالت جابجایی آزاد این مکنده خاموش است. یک صفحه نمایشگر الکتریکی دما،دمای ترموکوپل را نشان می دهد. ترموکوپل برای اندازه گیری دمای هوای ورودی(T1∞ ) و خروجی(T2∞) از کانال و سطح داغ ( TS) بکار می رود.

 

شرح كار:

 

1- دستگاه راروشن و سرعت مكنده را در ميزان از پيش تعين شده تنظيم كنيد.

2- سنسور دما را در نقطه TS قرار دهيد.

3- توان الكتريكي مقاومت رادر نقطه از پيش تعيين شده و ….

متن کامل در فایل زیر:

قیمت 1000 تومان

RIAL 10,000 – خرید

پاسخ دهید